

A SIMPLE AND SUSTAINABLE APPROACH FOR STRUCTURAL HEALTH MONITORING OF STRUCTURES

Adeer Khan, Haider Ilyas, M Jalil Khan Engr. Prof. Dr. Majid Ali

GROUP NO. 02

INTRODUCTION

>Structural health monitoring (SHM) is an advanced and multi-disciplinary technology that is used to monitor structures with the help of different techniques, sensors, management of data acquisition, and algorithms.

>For developing countries, its need is undermined due to its costly deployment. However, contrary to the costly helief

OBJECTIVES

>To analyze the gaps in the application of SHM in developing countries and then to recommend a simple and sustainable approach to achieve its amenities.

>Suggest and achieve a simple approach.

>Develop and set up the basic concept and instrumentation of the said approach.

SCOPE OF WORK

>The scope of our work is to devise a simple and sustainable SHM approach by experimenting for reliable results on a prototype structure and ultimately if time and effort are given on an old-built structure.

>Our study is limited to a steel structures only, and the SHM is performed on a locally made shake table

MAIN FINDINGS

its use is direly needed in densely populated developing damag	orrelate reliably between the mage stages and the SHM	that is limited to 1-D motion only with fixed – loading amplitude.	Harmonic _ Frequency 1.5	e ₀ (J) 0.084 {-}* [-]**	n ₀ E ₀ (J) 122 10.248	e ₁ (J) 0.104 {-} [24%]	n ₁ E ₁ (J) 118 12.272	e ₂ (J) 0.14 {-} [66%]	n ₂ E ₂ (J) 102 14.28	e3 (J) 0.15 {-} [79%]	n ₃ E ₃ (J) 105 15.75	e ₄ (J) 0.22 {-} [162%]	n ₄ E ₄ (J) 96 21.12	e 5 (J) 0.23 {-} [173%]	n ₅ E ₅ (J) 120 27.6
countries. pa	trameters.	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.7 1.8	0.17 {102%} [-] 0.19 {126%} [-]	88 14.96127 24.13	0.2 {92%} [18%] 0.23 {121%} [24%]	109 21.8134 30.82	0.23 {64%} [35%] 0.26 {86%} [37%]	89 20.47108 28.08	0.2 {33%} [18%] 0.31 {107%} [63%]	96 19.2126 39.06	0.24 {9%} [41%] 0.251 {14%} [32%]	102 24.48104 26.104	0.41 {78%} [141%] 0.49 {113%} [158%]	113 46.33 108 52.92
METHODOLOGY					165 34.65	0.32 {208%} [21%] 0.35 {236%}	141 45.12	0.31 {121%} [48%] 0.42 {200%}	129 39.99	0.36 {140%} [71%] 0.45 {200%}	94 33.84	0.35 {59%} [67%] 0.46 {109%}	93 32.55	0.54 {135%} [157%] 0.78 {240%}	152 82.08
SHM MODILIES	PROCED		2.1 2.1 (ii)	[-]	93 27.9	[17%]	162 56.7	[40%] -	142 59.64	[50%]	110 49.5	[53%]	84 38.64	[160%] 0.91 {296%} [203%]	9674.88160145.6
Sensory System (Accelerometers)			2.1 (iii)	-		-		-		-		-		0.98 {326%} [227%] 1.03 {347%}	91 89.18
	Prototy	pe Structure	2.1 (IV) 2.1 (V)	-		-		-		-		-		[243%] 1.9 {726%} [533%]	186 353.4
	Vibration	Based Approach	Shows the perce	entage increase centage increase	w.r.t to the base e w.r.t to the bas ACC	frequency of the e damage stage fr ELLER	e same damage st requency for any ATIC	ages corresponding N&	damage stage DISP	LACE	MENI	GRA	APHS		
			2	St	tage 0'	Time H	listorie	S		2	Stage 5	Time	Histori	es	
	em Snapback Tests	Harmonic Tests	= 2.10 Hz Acceleration (g)			00 30 30 -30 90- big 90	3, , , , , , , , , , , , , , , , , , ,			Cceletation (g)	Column Failure		90 90 30 -30 3 -30 -30	lumn Failure	9
	Governin	ng Parameters		$\ddot{u}_g(avg) = 0.45$	Time (s) ig ü _t (avg) = 0.92	-150 g	$u_{g}(avg) = 29.2$	Time (s) $3 \text{mm } u_t (\text{avg}) = 7$	5.07mm	-2 ü _g (avş	Time (s) $y = 0.44g \ddot{u}_t (avg) =$	1.28g	$u_g(avg) = 2$	Time (s) ?8.76mm u _t (avg)) = 84.30mm
			BASE SHEAR COLUMN						JMN I	FAILURE MODAL CHANGES					
	Time Histories	Modal Parameters	_	2.1 Hz Z	Stage ()						Freq	uency of I	Jamage S 2 - Case	Stages P-1

EXPERIMENTATION

PROTOTYPE STRUCTURE

Transducer

Damage Stages Criteria Table

Damaged Angle Fully Damaged Damage Sides Columns Stages DS₀ \mathbf{DS}_1 2 DS₂ 2 2 DS₃ DS₄ 2

CONCLUSION

>Due to recent advancements in technologies, modal techniques have resurged due to better equipment availability and data segregation ML algorithms; making them cost-effective.

>The acceleration and displacement curves obtained from local and cheap instruments seem to be reliable. Thus, the use of such equipment is recommended for real-life applications in a developing nation like Pakistan.

>Overall the energy dissipation in the joint failure and according to the damage stages was well displayed by the acceleration-time and displacement-time curves.

>An automated system that would generate a warning upon the changes in structural responses would result in an early warning system that could prevent countless lives.

PROJECT OUTPUT

- >Intended Journal Article: Khan, A., Ilyas, H., Khan, J., and Ali, M. (2022). A simple and sustainable approach for structural health monitoring of structures. Engineering Structures (Impact factor = 4.471) >Referred Conference Articles:
- (1) Ilyas, H. & Ali, M. (2022). Low price instrumentations for structural health monitoring A review. 1st International Conference on Advances in Civil & Environmental Engineering, University of Engineering & Technology Taxila, Pakistan. Taxila: University of Taxila. (Published)
- (2) Khan, J. & Ali, M. (2022). A review on the correlation between damage stages in structure lifespan and structural health monitoring. 12th International International Civil Engineering Conference, NED University, Pakistan. (Published)
- (3) Ilyas, H. & Ali, operties of structure using snapback test. 1st International Conference on Engineering and Applied Natural Sciences, Konya, Turkey. European Journal of Science and Technology. (Published) (4) Khan, A. and Ali, M. (2022). Consideration of simple approaches for structural health monitoring of structures in developing countries - An overview. 3rd European Conference on Earthquake and Seismology, Romanian Association for Earthquake Engineering Bucharest, Romania. (Accepted)

ACKNOWLEDGEMENTS

> Engr. Prof. Dr. Majid Ali > Nadeem Shahzad (Lab Technician) > Department of Civil Engineering > Capital University of Science & Technology